3.29 \(\int \frac {(a+b \text {csch}^{-1}(c x))^3}{x^2} \, dx\)

Optimal. Leaf size=78 \[ -\frac {6 b^2 \left (a+b \text {csch}^{-1}(c x)\right )}{x}+3 b c \sqrt {\frac {1}{c^2 x^2}+1} \left (a+b \text {csch}^{-1}(c x)\right )^2-\frac {\left (a+b \text {csch}^{-1}(c x)\right )^3}{x}+6 b^3 c \sqrt {\frac {1}{c^2 x^2}+1} \]

[Out]

-6*b^2*(a+b*arccsch(c*x))/x-(a+b*arccsch(c*x))^3/x+6*b^3*c*(1+1/c^2/x^2)^(1/2)+3*b*c*(a+b*arccsch(c*x))^2*(1+1
/c^2/x^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 78, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 3, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {6286, 3296, 2638} \[ -\frac {6 b^2 \left (a+b \text {csch}^{-1}(c x)\right )}{x}+3 b c \sqrt {\frac {1}{c^2 x^2}+1} \left (a+b \text {csch}^{-1}(c x)\right )^2-\frac {\left (a+b \text {csch}^{-1}(c x)\right )^3}{x}+6 b^3 c \sqrt {\frac {1}{c^2 x^2}+1} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcCsch[c*x])^3/x^2,x]

[Out]

6*b^3*c*Sqrt[1 + 1/(c^2*x^2)] - (6*b^2*(a + b*ArcCsch[c*x]))/x + 3*b*c*Sqrt[1 + 1/(c^2*x^2)]*(a + b*ArcCsch[c*
x])^2 - (a + b*ArcCsch[c*x])^3/x

Rule 2638

Int[sin[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Cos[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 3296

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> -Simp[((c + d*x)^m*Cos[e + f*x])/f, x] +
Dist[(d*m)/f, Int[(c + d*x)^(m - 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && GtQ[m, 0]

Rule 6286

Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> -Dist[(c^(m + 1))^(-1), Subst[Int[(a + b
*x)^n*Csch[x]^(m + 1)*Coth[x], x], x, ArcCsch[c*x]], x] /; FreeQ[{a, b, c}, x] && IntegerQ[n] && IntegerQ[m] &
& (GtQ[n, 0] || LtQ[m, -1])

Rubi steps

\begin {align*} \int \frac {\left (a+b \text {csch}^{-1}(c x)\right )^3}{x^2} \, dx &=-\left (c \operatorname {Subst}\left (\int (a+b x)^3 \cosh (x) \, dx,x,\text {csch}^{-1}(c x)\right )\right )\\ &=-\frac {\left (a+b \text {csch}^{-1}(c x)\right )^3}{x}+(3 b c) \operatorname {Subst}\left (\int (a+b x)^2 \sinh (x) \, dx,x,\text {csch}^{-1}(c x)\right )\\ &=3 b c \sqrt {1+\frac {1}{c^2 x^2}} \left (a+b \text {csch}^{-1}(c x)\right )^2-\frac {\left (a+b \text {csch}^{-1}(c x)\right )^3}{x}-\left (6 b^2 c\right ) \operatorname {Subst}\left (\int (a+b x) \cosh (x) \, dx,x,\text {csch}^{-1}(c x)\right )\\ &=-\frac {6 b^2 \left (a+b \text {csch}^{-1}(c x)\right )}{x}+3 b c \sqrt {1+\frac {1}{c^2 x^2}} \left (a+b \text {csch}^{-1}(c x)\right )^2-\frac {\left (a+b \text {csch}^{-1}(c x)\right )^3}{x}+\left (6 b^3 c\right ) \operatorname {Subst}\left (\int \sinh (x) \, dx,x,\text {csch}^{-1}(c x)\right )\\ &=6 b^3 c \sqrt {1+\frac {1}{c^2 x^2}}-\frac {6 b^2 \left (a+b \text {csch}^{-1}(c x)\right )}{x}+3 b c \sqrt {1+\frac {1}{c^2 x^2}} \left (a+b \text {csch}^{-1}(c x)\right )^2-\frac {\left (a+b \text {csch}^{-1}(c x)\right )^3}{x}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.25, size = 132, normalized size = 1.69 \[ -\frac {a^3+3 b \text {csch}^{-1}(c x) \left (a^2-2 a b c x \sqrt {\frac {1}{c^2 x^2}+1}+2 b^2\right )-3 a^2 b c x \sqrt {\frac {1}{c^2 x^2}+1}+3 b^2 \text {csch}^{-1}(c x)^2 \left (a-b c x \sqrt {\frac {1}{c^2 x^2}+1}\right )+6 a b^2-6 b^3 c x \sqrt {\frac {1}{c^2 x^2}+1}+b^3 \text {csch}^{-1}(c x)^3}{x} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcCsch[c*x])^3/x^2,x]

[Out]

-((a^3 + 6*a*b^2 - 3*a^2*b*c*Sqrt[1 + 1/(c^2*x^2)]*x - 6*b^3*c*Sqrt[1 + 1/(c^2*x^2)]*x + 3*b*(a^2 + 2*b^2 - 2*
a*b*c*Sqrt[1 + 1/(c^2*x^2)]*x)*ArcCsch[c*x] + 3*b^2*(a - b*c*Sqrt[1 + 1/(c^2*x^2)]*x)*ArcCsch[c*x]^2 + b^3*Arc
Csch[c*x]^3)/x)

________________________________________________________________________________________

fricas [B]  time = 0.83, size = 222, normalized size = 2.85 \[ -\frac {b^{3} \log \left (\frac {c x \sqrt {\frac {c^{2} x^{2} + 1}{c^{2} x^{2}}} + 1}{c x}\right )^{3} - 3 \, {\left (a^{2} b + 2 \, b^{3}\right )} c x \sqrt {\frac {c^{2} x^{2} + 1}{c^{2} x^{2}}} + a^{3} + 6 \, a b^{2} - 3 \, {\left (b^{3} c x \sqrt {\frac {c^{2} x^{2} + 1}{c^{2} x^{2}}} - a b^{2}\right )} \log \left (\frac {c x \sqrt {\frac {c^{2} x^{2} + 1}{c^{2} x^{2}}} + 1}{c x}\right )^{2} - 3 \, {\left (2 \, a b^{2} c x \sqrt {\frac {c^{2} x^{2} + 1}{c^{2} x^{2}}} - a^{2} b - 2 \, b^{3}\right )} \log \left (\frac {c x \sqrt {\frac {c^{2} x^{2} + 1}{c^{2} x^{2}}} + 1}{c x}\right )}{x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))^3/x^2,x, algorithm="fricas")

[Out]

-(b^3*log((c*x*sqrt((c^2*x^2 + 1)/(c^2*x^2)) + 1)/(c*x))^3 - 3*(a^2*b + 2*b^3)*c*x*sqrt((c^2*x^2 + 1)/(c^2*x^2
)) + a^3 + 6*a*b^2 - 3*(b^3*c*x*sqrt((c^2*x^2 + 1)/(c^2*x^2)) - a*b^2)*log((c*x*sqrt((c^2*x^2 + 1)/(c^2*x^2))
+ 1)/(c*x))^2 - 3*(2*a*b^2*c*x*sqrt((c^2*x^2 + 1)/(c^2*x^2)) - a^2*b - 2*b^3)*log((c*x*sqrt((c^2*x^2 + 1)/(c^2
*x^2)) + 1)/(c*x)))/x

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \operatorname {arcsch}\left (c x\right ) + a\right )}^{3}}{x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))^3/x^2,x, algorithm="giac")

[Out]

integrate((b*arccsch(c*x) + a)^3/x^2, x)

________________________________________________________________________________________

maple [F]  time = 0.05, size = 0, normalized size = 0.00 \[ \int \frac {\left (a +b \,\mathrm {arccsch}\left (c x \right )\right )^{3}}{x^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arccsch(c*x))^3/x^2,x)

[Out]

int((a+b*arccsch(c*x))^3/x^2,x)

________________________________________________________________________________________

maxima [A]  time = 0.35, size = 144, normalized size = 1.85 \[ -\frac {b^{3} \operatorname {arcsch}\left (c x\right )^{3}}{x} + 3 \, {\left (c \sqrt {\frac {1}{c^{2} x^{2}} + 1} - \frac {\operatorname {arcsch}\left (c x\right )}{x}\right )} a^{2} b + 6 \, {\left (c \sqrt {\frac {1}{c^{2} x^{2}} + 1} \operatorname {arcsch}\left (c x\right ) - \frac {1}{x}\right )} a b^{2} + 3 \, {\left (c \sqrt {\frac {1}{c^{2} x^{2}} + 1} \operatorname {arcsch}\left (c x\right )^{2} + 2 \, c \sqrt {\frac {1}{c^{2} x^{2}} + 1} - \frac {2 \, \operatorname {arcsch}\left (c x\right )}{x}\right )} b^{3} - \frac {3 \, a b^{2} \operatorname {arcsch}\left (c x\right )^{2}}{x} - \frac {a^{3}}{x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))^3/x^2,x, algorithm="maxima")

[Out]

-b^3*arccsch(c*x)^3/x + 3*(c*sqrt(1/(c^2*x^2) + 1) - arccsch(c*x)/x)*a^2*b + 6*(c*sqrt(1/(c^2*x^2) + 1)*arccsc
h(c*x) - 1/x)*a*b^2 + 3*(c*sqrt(1/(c^2*x^2) + 1)*arccsch(c*x)^2 + 2*c*sqrt(1/(c^2*x^2) + 1) - 2*arccsch(c*x)/x
)*b^3 - 3*a*b^2*arccsch(c*x)^2/x - a^3/x

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (a+b\,\mathrm {asinh}\left (\frac {1}{c\,x}\right )\right )}^3}{x^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asinh(1/(c*x)))^3/x^2,x)

[Out]

int((a + b*asinh(1/(c*x)))^3/x^2, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a + b \operatorname {acsch}{\left (c x \right )}\right )^{3}}{x^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*acsch(c*x))**3/x**2,x)

[Out]

Integral((a + b*acsch(c*x))**3/x**2, x)

________________________________________________________________________________________